We have also worked on other single board computers (SBCs) targeting industrial applications based on high-end Intel processors. We are looking forward to working on more such challenging projects from the industrial domain.

Q: What about your interests in the test and measurement (T&M) sector?
A: We have been working on an array of T&M boards dealing with high-speed interfaces like serial-attached small computer system interface (serial-attached SCSI), PCIe Gen4, serial advanced technology attachment express (SATAe), universal serial bus (USB) 3.0, DDR4 and a variety of form factors ranging from small form factor(SFF)-based storage devices to small-outline dual-in-line memory module (SODIMM), unregistered dual-in-line memories (UDIMMs) and a few custom form factors targeting specific end-customers. These boards tap high-speed signals from live systems-under-test and are expected to induce minimal noise into those systems. The main challenge here is the speeds at which these interfaces work and the kind of signal integrity (SI) that has to be achieved. During design, these boards are run through multiple levels of SI simulations to ensure that the highest level of signal quality is achieved. In many cases, the high-speed traces are exposed, so as to have minimal propagation delay through the printed circuit board (PCB). Sharp bends are not allowed on these traces, and instead, arcs or curves are used. Back-drilling technique is used to make sure that the stub length on these traces is a bare minimum. In short, the layout of these boards demands the most stringent constraints.

Q: From a PCB perspective, what are the factors that determine signal integrity?
A: The choice of materials used to fabricate the PCB and even the type and quantity of solder used to assemble the components can create an impact on the signal quality and these are very carefully selected.

Q: Talking about boards for T&M equipment, how do you go about testing those boards?
A: Simulation rules the roost here to arrive at the best design. First, a golden board is arrived at, which behaves exactly the way we want it to. All other boards are then tested against this board.

Q: Tell us what you do in the IoT arena.
A: We have a separate practice for IoT projects. We are already developing new IoT products and also adding connectivity to existing products for our customers. We do all the building blocks for IoT including the hardware, firmware, mechanical enclosure, cloud interface and complete product compliance certifications, and deliver ready-to-manufacture designs.

Q: What is the most exciting IoT project you have worked on?
A: We worked on a lighting control solution project recently. Instead of walking to the switchboard and manually turning on/off lights, you operate it via a mobile phone. You can also access your lights remotely from anywhere in the world, as long as the devices are connected.

Q: How do you see the growth of independent design houses (IDHs) in India?
A: India-based product design houses have a good future. There is a lot of untapped potential for services companies offering hardware/firmware design services. There are several players in this field already, but there is space available for more. India is traditionally known for software outsourcing, but our hardware or complete product design capabilities are not well-known as it is not marketed well like the software. I think people should come forward and start new ventures to offer product design services for India, as well as for global clients. There are challenges like lack of component industry in India, complicated customs rules and related delays in importing parts, but these can be solved with appropriate help from the government.


SHARE YOUR THOUGHTS & COMMENTS

Please enter your comment!
Please enter your name here