

TOPIC:- K-MAP AND Quine - McCluskey method of minimization.

RAKESH JAIN
(Assistant Professor)

GEETANJALI INSTITUTE OF TECHNICAL STUDIES

Karnaugh Maps

- ▶ Algebraic procedures:
 - ▶ Difficult to apply in a systematic way.
 - ▶ Difficult to tell when you have arrived at a minimum solution.
- ▶ Karnaugh map (K-map) can be used to minimize functions of up to 6 variables.
 - ▶ K-map is directly applied to two-level networks composed of AND and OR gates.
 - ▶ Sum-of-products, (SOP)
 - ▶ Product-of-sum, (POS).

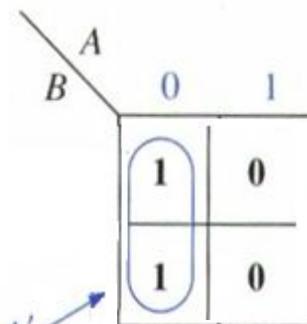
Minimum SOP

- ▶ It has a minimum no. of terms.
 - ▶ That is, it has a minimum number of gates.
- ▶ It has a minimum no. of gate inputs.
 - ▶ That is, minimum no. of literals.
 - ▶ Each term in the minimum SOP is a prime implicant, i.e., it cannot be combined with others.
- ▶ It may not be unique.
 - ▶ Depend on the order in which terms are combined or eliminated.

Minimum POS

- ▶ It has a minimum no. factors.
- ▶ It has a minimum no. of literals.
- ▶ It may not be unique.
 - ▶ Use $(X+Y) (X+Y') = X$

2-Variable K-map

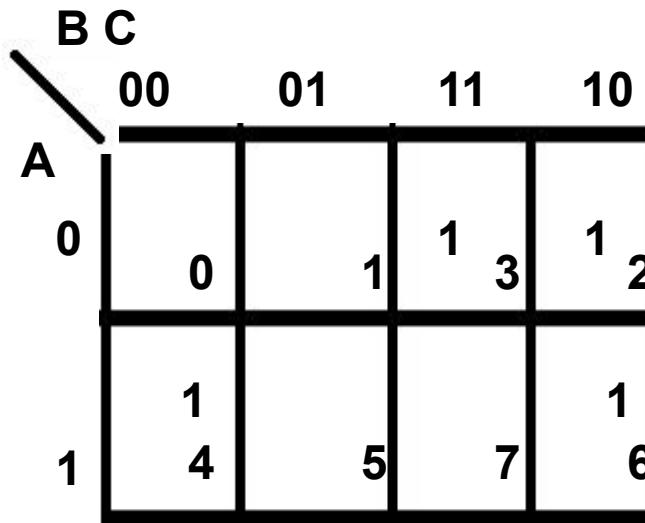

- ▶ Place 1s and 0s from the truth table in the K-map.
- ▶ Each square of 1s = minterms.
- ▶ Minterms in adjacent squares can be combined since they differ in only one variable.

A	B	F
0	0	1
0	1	1
1	0	0
1	1	0

(a)

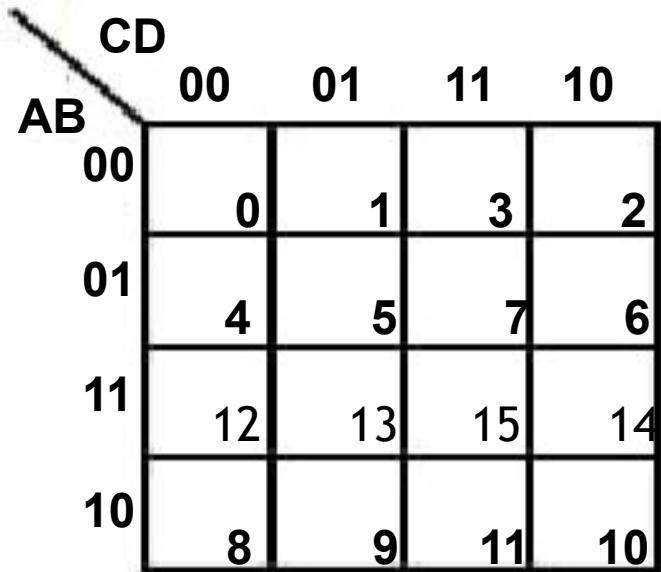
(b)

$$A'B' + A'B = A'$$

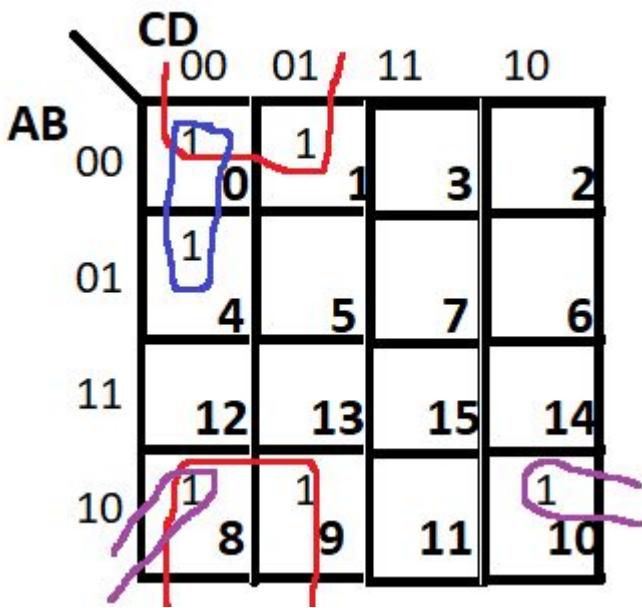


$$F = A'$$

3-Variable K-map


<i>A</i>	<i>B</i>	<i>C</i>	<i>F</i>
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

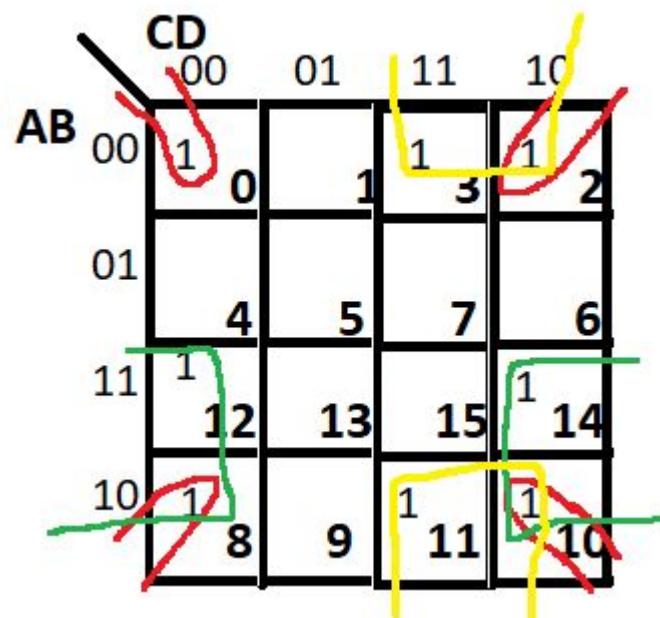
$$\overline{A}B + B\overline{C} + A\overline{C}$$


4-Variable K Map

		CD	00	01	11	10
		AB	00	01	11	10
		00	0	1	3	2
		01	4	5	7	6
		11	12	13	15	14
		10	8	9	11	10

$$f(A, B, C, D) = \sum m(0, 1, 4, 8, 9, 10)$$

$$\overline{B}\overline{C} + \overline{A}\overline{C}\overline{D} + A\overline{B}\overline{D}$$



Q. Minimize using
k-map:-

ROUGH			
$\bar{D} = 0$		$\bar{D} = 1$	
$\bar{A} \bar{B} \bar{C} \bar{D}$		$\bar{A} \bar{B} C \bar{D}$	
0	0	1	0
8	4	2	1
1	1	1	0
$8 + 4 + 2 = 14$			

$$\bar{A} \bar{B} C \bar{D} + A \bar{B} C \bar{D} + \bar{A} \bar{B} C \bar{D} + \bar{A} \bar{B} C \bar{D}$$

Down arrows point to minterms: 0010 (2), 1110 (14), 1010 (10), 1011 (11), 1000 (8), 1100 (12), 0011 (3), 0000 (0).

$$\bar{B} \bar{D} + A \bar{D} + \bar{B} C$$

Quine-McCluskey Method

- ▶ The Quine-McCluskey method is a systematic algorithm, also known as the Tabular method, for simplifying Boolean expressions with many variables, making it more suitable for machine computation than Karnaugh maps (K-maps) which are limited to a smaller number of inputs.
- ▶ A prime implicant chart is used to select a minimum set of prime implicants.

$$f(A,B,C,D) = \Sigma(1,2,5,6,7,9,10) + \Sigma_d(0,13,15)$$

Implication Table

Column I

0	0000
1	0001
2	0010
5	0101
6	0110
9	1001
10	1010
7	0111
13	1101
15	1111

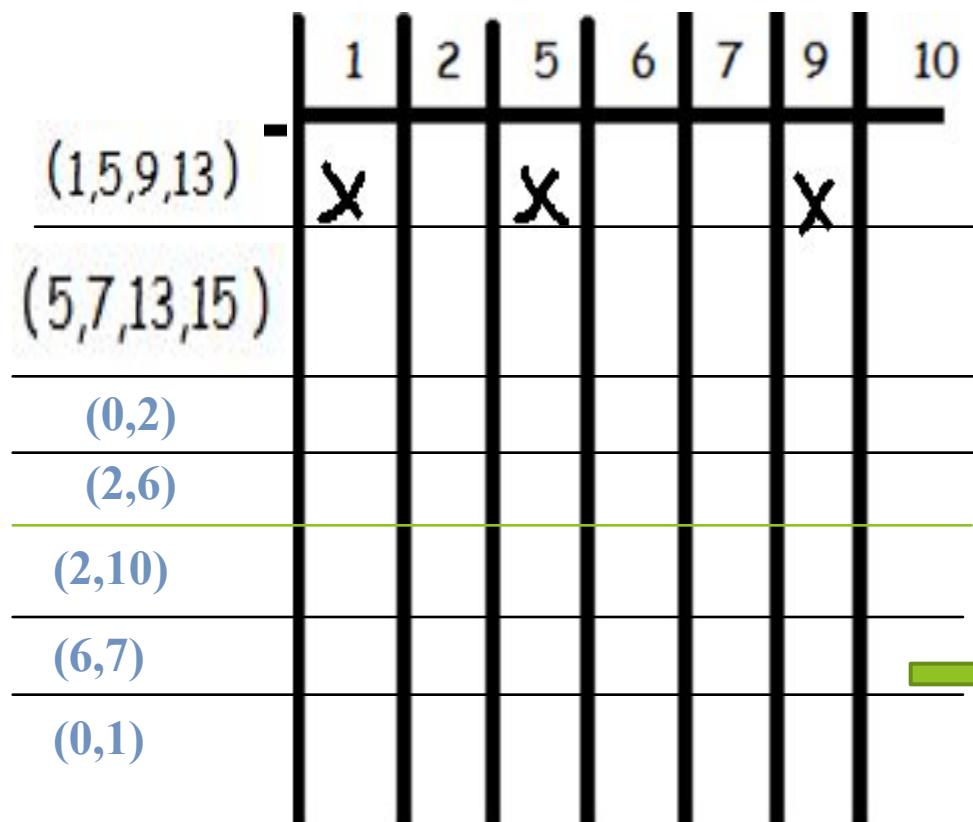
$$f(A,B,C,D) = \Sigma(1,2,5,6,7,9,10) + \Sigma_d(0,13,15)$$

Implication Table

	Column I	Column II
0	0000	000- (0,1)
1	0001	00-0 (0,2)
2	0010	0-01 (1,5)
5	0101	-001 (1,9)
6	0110	0-10 (2,6)
9	1001	-010 (2,10)
10	1010	01-1 (5,7)
7	0111	-101 (5,13)
13	1101	011- (6,7)
15	1111	1-01 (9,13)
		-111 (7,15)
		11-1 (13,15)

$$f(A,B,C,D) = \Sigma(1,2,5,6,7,9,10) + \Sigma_d(0,13,15)$$

Implication Table


	Column I	Column II	Column III
0	0000	000- (0,1)	--01 (1,5,9,13)
1	0001	00-0 (0,2)	-1-1 (5,7,13,15)
2	0010	0-01 (1,5)	
5	0101	-001 (1,9)	00-0 (0,2)
6	0110	0-10 (2,6)	
9	1001	-010 (2,10)	0-10 (2,6)
10	1010	01-1 (5,7)	-010 (2,10)
7	0111	-101 (5,13)	011- (6,7)
13	1101	011- (6,7)	000- (0,1)
15	1111	1-01 (9,13)	
		-111 (7,15)	
		11-1 (13,15)	

Prime Implicant

13

Prime Implicant chart

$$\overline{A} \overline{B} C + \overline{B} C \overline{D} + \overline{C} D$$

Essential prime implicant

--O1

$\overline{C} D$

-010

$\overline{B} C \overline{D}$

011-

$\overline{A} B C$

14

