Friday, December 5, 2025

The Rise Of High Energy Aqueous Batteries

With the innovative multi-electron transfer cathode using bromine and iodine, it has achieved energy densities up to 1,200 Wh/L, redefining the possibilities for aqueous batteries and paving the way for safer, more powerful energy solutions.

Traditional lithium-ion batteries, renowned for their high energy density, rely on flammable organic electrolytes, raising concerns about their safety. In contrast, aqueous batteries use water-based electrolytes, which are inherently safer but have historically suffered from lower energy densities due to the limited solubility of electrolytes and reduced battery voltage.

- Advertisement -

Researchers Prof. Li Xianfeng and Prof. Fu Qiang from the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences introduces a significant advancement in aqueous battery technology. Their research unveils a multi-electron transfer cathode using bromine and iodine, achieving a specific capacity of over 840 Ah/L and an impressive energy density of up to 1,200 Wh/L in full battery tests.

The core innovation lies in the use of a mixed halogen solution containing iodide (I-) and bromide (Br-) ions as the electrolyte. This approach facilitates a multi-electron transfer reaction where I- is converted to elemental iodine (I2) and subsequently to iodate (IO3-). During charging, I- oxidizes to IO3- at the cathode, while the anode manages the flow of hydrogen ions (H+) across the cell. On discharge, these processes are reversed, with IO3- reducing back to I-, and H+ ions moving accordingly to balance the reaction.

A critical aspect of their design is the introduction of bromide ions, which form polar iodine bromide (IBr) during charging. This intermediate reacts with water to generate IO3-, enhancing the kinetics and reversibility of the cell’s electrochemical reactions. During discharge, the reverse reaction occurs, with IO3- oxidizing Br- to bromine (Br2), participating actively in the electrochemical process. The study not only confirms the feasibility of this new cathode through in-situ optical microscopy and Raman spectroscopy but also demonstrates a marked improvement in the energy storage capabilities of aqueous batteries. Prof. Li emphasized the potential of this development to expand the applications of aqueous batteries in power-intensive fields, offering a safer and more efficient alternative to traditional lithium-ion technology. This advancement is poised to redefine safety standards and performance metrics for batteries, providing a robust platform for future innovations in energy storage.

Akanksha Gaur
Akanksha Gaur
Akanksha Sondhi Gaur is a journalist at EFY. She has a German patent and brings a robust blend of 7 years of industrial & academic prowess to the table. Passionate about electronics, she has penned numerous research papers showcasing her expertise and keen insight.

SHARE YOUR THOUGHTS & COMMENTS

EFY Prime

Unique DIY Projects

Electronics News

Truly Innovative Electronics

Latest DIY Videos

Electronics Components

Electronics Jobs

Calculators For Electronics

×