Home Buzz What's New

Lithium And Electrolyte Distribution In Lithium-Ion Cells

1076
Dr. Anatoliy Senyshyn (FRM II/TUM) hat zusammen mit der TU Darmstadt und dem KIT mit Hilfe hochauflösender Neutronenbeugung am Instrument SPODI das Verhalten von Lithiumionen-Batterien beim Laden und Entladen genauer untersucht. Die Messungen deuten auf einen bis dahin unbekannten Mechanismus bei der Einlagerung von Lithiumionen in die Graphitanode hin.
Die Wissenschaftler positionierten handelsübliche Li-Zellen der Bauart 18650 in einem Neutronenstrahl. Die ungeladenen Elementarteilchen werden am Elektrodenmaterial der Zellen abgelenkt. Die Winkel, unter denen dies geschieht, lassen Rückschlüsse auf den Aufbau und die Zusammensetzung der Batteriekomponenten zu. Mit anderen Methoden war es bisher nicht möglich, den Zustand während des Betriebs zu untersuchen. Denn öffnet man die Zelle, kann das Auswirkungen auf ihr elektrochemisches Gleichgewicht haben und die Ergebnisse verfälschen.
Bei der Untersuchung des Ermüdungsverhaltens konnten die Forscher zeigen, dass sich bei fortschreitendem Betrieb der Zellen einige Lithi-um-Ionen irreversibel auf der Anode ablagern und dann nicht mehr zur Verfügung stehen, was die Kapazität der Batterie verringert. In weiteren Analysen beobachteten die Wissenschaftler Beugungsmuster, die auf einen bis dahin unbekannten Mechanismus bei der Einlagerung von Lithium-Ionen in die Grafitanode hindeuten. Bei ihren neuesten Messungen fanden sie heraus, dass sich die Menge des Elektrolyten in den Zellen nach vielen Ladungszyklen verringert, gleichzeitig mit der Menge der aktiven Lithium-Ionen. Künftige Analysen sollen die Ursache dafür finden.

Anatoliy Senyshyn (FRM II/TUM) together with colleagues from TU Darmstadt and KIT/IAM-ESS Karlsruhe, therefore, studied the charge and discharge behaviour in more detail using high-resolution neutron powder diffraction at the instrument SPODI.
The scientist positioned commercially available Li-celles of type 18650 in a neutron beam. The uncharged elementary particl

Rechargeable batteries are used everywhere but their capacity drops after a while due to uneven distribution of lithium

Lithium-ion cell in the slide of the STRESS-SPEC diffractometer at FRM II, which investigates questions in materials science. © A. Heddergott / TUM

The outstanding characteristics of the lithium-ion battery have hugely impacted our everyday lives. However, various effects that occur over time gradually reduce the great storage capacity of these batteries.

At the Technical University of Munich’s Research Neutron Source Heinz Maier-Leibnitz (FRM II), Dr Anatoliy Senyshyn, an instrument scientist at the high-resolution powder diffractometer SPODI, used neutron scattering to investigate the cause of these effects in cylindrical lithium-ion batteries and find answers to fundamental questions concerning capacity drop over time, lithium distribution and the structure and behaviour of rechargeable lithium-ion batteries. 

Until now theoretical models, calculations and measurements usually assume an even distribution of lithium in these batteries. However, the investigations indicate that the lithium is very unevenly distributed from the very beginning; and the inhomogeneity rises over time. 

The reason why battery capacity sinks

Lithium-ion cells produce electricity as lithium atoms release electrons, which then flow through a connected device. At the same time, inside the cell, a lithium-ion moves from one electrode to the other, which means there are always only as many electrons available as there are lithium ions. When the rechargeable battery loses capacity, it can also be said that the lithium “gets lost”. 

The products resulting from the electrolyte decomposition trap lithium atoms, which are then no longer available as mobile lithium to be exchanged between the two electrodes. As a result, the battery loses capacity. It ages.

Using neutrons to investigate a rechargeable battery

To observe a lithium-ion cell’s interior during charging and discharging, for example, the decomposition of the electrolyte or the distribution of the lithium is very difficult from outside of the cell due to the high reactivity of the cell components with oxygen and air humidity. 

Neutrons are particularly sensitive to lighter elements such as hydrogen and lithium. Therefore they can render the lithium inside a cell visible, making investigations possible under actual operational conditions.

The neutron scattering experiments at the instruments STRESS-SPEC and SPODI indicated a linear relationship between the loss of mobile lithium ions and the decomposition of the electrolyte, which occurs for example as an unwanted side reaction during charging. 

Neutrons make it possible to look non-destructively inside the lithium-ion batteries and see the distribution and amount of lithium in the graphite anode. In the background is the structure of the graphite that has incorporated lithium. © Reiner Müller

Another advantage of working with neutrons is that they can be used in non-destructive testing. Thus for example the researchers can observe internal battery processes from outside without intervening in the delicate system.

Modelling of lithium-ion cells can be significantly improved when developers take into account the uneven lithium distribution. 

These results are an important basis for making more efficient rechargeable batteries with longer service lives and higher performance in the future.


NO COMMENTS

SHARE YOUR THOUGHTS & COMMENTS

Please enter your comment!
Please enter your name here