Technology in Healthcare – An Astonishing Opportunity

By Mirko Bernacchi, Technical Support Representative presso Mouser Electronics


As we’re frequently reminded, people are living longer and (in many cases) leading healthier lifestyles. This is primarily thanks to improved medical techniques and interventions. As elderly population demographics continue to grow in most countries, healthcare is following suit, booming on a global scale. Technology has played a huge role in this growth, and continues to enable improvements in healthcare to be realized.

From robotic surgery, electronic anaesthesia regulators, and therapeutic or diagnostic radiology machines, to communications technology in hospital wards, and various instruments found in outpatient departments ), technology is prevalent within the confines of the hospital environment technology being utilized within hospitals continues to develop, but a burgeoning marketplace is also emerging in a domestic context too. Much of it is intended to provide continuous or occasional monitoring of patients’ health, with the results that are gathered uploaded to healthcare operatives in hospitals, clinics or even GPs’ offices.

This reduces the burden on the healthcare system by allowing patients to attend hospitals or doctors’ offices for consultation less regularly than they might otherwise have to do, while enabling alarms to be triggered if unusual readings are noted. Perhaps most valuably of all, it enables patients to enjoy more relaxed lives.

Many people are significantly incapacitated by their medical conditions and find hospital visits mentally taxing and time-consuming. By having their readings captured automatically then passed on to relevant experts for analysis, much less emotional strain falls on the patients’ shoulders. Bluetooth Low Energy (BLE) and Near Field Communication (NFC) are two wireless technologies already being widely employed for accessing patient data..

Smartphones and their associated apps are now invaluable to doctors when they are on the move. They enable test results to be called up and viewed rapidly. They have also been found to improve clinical decision making, allowing doctors to check that they are on the right track immediately, rather than having to go elsewhere to refer to notes or study related material. Mobile technology is also frequently used by patients for downloading test results or readings from devices such as single-lead, Electrocardiogram (EKG or ECG) monitors, for instance.

Wearable Technology Finds New Outlets

As evidenced above, many of the innovations being made in the medical field are spin-offs from developments in consumer electronics. Wearable technology has been a tremendous buzz phrase for the last few years, with a great deal of progress being made in the area of fitness aids. While there are signs that the craze is starting to die down in the consumer field, the healthcare market provides an attractive alternative route through which ongoing technological development can take place.

Whatever the underlying basis of these developments may be, the key parameter must always be safety for the patient:In no way can the device in question jeopardize patient health. Medical wearables should not only be safe, but also reliable, both in terms of overall operation and the integrity of data being recorded.

One notable area of development lies in adhesive patches. These items contain sensors that enable the wearer’s sweat to be analyzed for important biomarkers and can, for instance, be used to detect the existence of conditions like cystic fibrosis. Doctors can also use patches to monitor other aspects of a patient’s health, such as oxygen levels, heart rate, or medication-taking.

Fields Of Research

Academic researchers from the Technical University of Eindhoven, in the Netherlands, are currently working on combining the use of organic and large area electronics with techniques such as thin film metallization. By doing so they can build up multiple layers of sophisticated, flexible electronics that are highly optimised for wearable medical deployment.

Meanwhile, diabetic patients are also benefiting from developments in wearable technology. Frequent and accurate reading of diabetics’ glucose levels is vital to ensure that these individuals’ blood sugar levels remain stable and are controlled effectively. Interstitial fluid (the fluid that is located between body cells and provides much of the body’s liquid content) serves an accurate indicator of glucose levels. A wearable tracker introduced by Dexcom consists of a disposable needle that goes under the skin and measures the amount of glucose in the interstitial fluid, along with a patch that sits on top of the needle and contains the electronics needed to capture the data and subsequently transmit it via Bluetooth. The needle and patch are worn unobtrusively on the user’s abdomen.

Powering wearable medical technology is another important aspect for researchers to explore. Ensuring that a worn device has access to the necessary power reserves is of paramount importance. Certainly no user wants the inconvenience of carrying a heavy battery everywhere. Research teams are studying ways in which nanotechnology can harness users’ body movements or heat to power the technology they wear.


Please enter your comment!
Please enter your name here