Saturday, April 27, 2024

When Agriculture No Longer Suffers From The Volatilities of Nature…

- Advertisement -

You can grow strawberries in Rajasthan and lettuce in a land stained by nuclear residue.

You can harvest enough fresh produce to sell to 20 million people, in a farm of 30,000 sq ft spread over multiple storeys.

You can grow organic lettuces so tasty that they sell for thrice the price of field-grown lettuces.

- Advertisement -

You can prevent farmer suicides.

The time is ripe for tech-enabled vertical farming in India.

Vertical farming is not an entirely new concept. Concepts like hydroponics and aeroponics have existed for quite some time now. Hydroponics is basically the art and science of growing crops in nutrient-enriched water, doing away with the need for soil. The water is recycled and used over and over again. Aeroponics is a more advanced type of hydroponics where the nutrients are supplied to the plants through mist or water vapour. Vertical farming builds on these technologies to grow crops indoors, in urban areas, in multi-storey buildings. Several trays or tanks of crops can be grown, arranged next to each other or stacked vertically. The enriched water or mist provides the crop with all the required nutrients to grow well and grow fast to give excellent yields.

When you add technology to the vertical farming formula, it becomes possible to grow healthy and safe crops all year round in any part of the world, unmindful of the weather there. This is called controlled-environment farming (CEF). Basically, an indoor space is made ideal for a crop by controlling everything from lighting to humidity using technologies like light-emitting diode (LED) lighting, air-conditioning, smart control software, and so on.

Vertical farming is very relevant in today’s world, because more and more rural lands are getting engulfed by the cities. It is a pity that we often buy fruit and vegetables grown miles away, and pay through our noses for organic produce. Vertical farming can change all this! Take for example Green Sense, a tech-enabled vertical farm near Chicago. In a farm that spans 30,000 square feet, they can grow fresh produce that can be distributed within 100 miles to 20 million people.

Although India was one of the earliest pioneers of vertical farming (the 1950s book Hydroponics: The Bengal System remains a popular handbook on the subject!), it is sad that the full potential of vertical farming is yet to be discovered here. We can say that vertical farming was a technology that came before its time in India… but its time has come now! Not only is the need for vertical farming very deeply felt by urban dwellers today, the technologies that can make vertical farming more effective have also come of age.

CEF is predictable: Crops grown under such controlled environments produce high yields and quick turnaround. The crop is more or less predictable, reducing the risk of losses due to the vagaries of nature, which is one of the main reasons for farmer suicides in our country. Vagaries in natural conditions like temperature, water availability and photo-intensity affect crops badly. In controlled-environment faming, all this is under the farmer’s control.

Profitable: Although it initially seems like the cost is high, due to investment in building infrastructure, technology, ongoing consumption of electricity, and so on, some experts feel that it will be economical in the long run because vertical farming requires less labour and does away with investments like buying tractors, seed dispersers, sprinklers and other farming equipment. Moreover, the crop – and hence the returns – are predictable.

According to Aerofarms, the world’s largest indoor vertical farm, their aeroponic system is a closed loop system that uses 95 per cent less water than field farming, 40 per cent less than hydroponics and zero pesticides. By controlling the environment and supplying apt micro-nutrients to the crops, they claim that given the same seed, they can grow it in half the time as a traditional field farmer, and achieve 75 times more productivity per square foot than a commercial field farm.

Safe: Indoor farming is clean and hygienic. The sterile environment keeps pests away, and it also keeps unclean farming practices at bay. Dr. Despommier explains in a ThinkProgress report: “It’s a disturbing fact, but nonetheless true, that half the world can’t afford fertilisers and so they use human faeces. It’s the best way to transfer parasites from one person to the next. Of course, indoor farming wouldn’t allow that to happen. E. coli 0157, which is from animal sources, is another big threat. That’s from cow manure. Cow manure is a favourite for fertilisers. And if you’re spraying that on your plants, it’s very hard to get rid of. So it just makes sense to try to avoid these things before you’ve got them.”

Healthy: You might wonder if vegetables grown indoors, devoid of natural sunshine, will be as nutritious as natural field-grown vegetables. In a media report, Caleb Harper of MIT Media Lab, who drives their CityFARM project, argued: “You would think, if it doesn’t have sunlight, it can’t possibly be nutritious, but the reality is that plants only harvest 10 per cent of the sun’s rays, which we can recreate in the lab. There is absolutely no nutritional difference between plants grown in sunlight and under an LED.” Robert Colangelo, president and founder of Green Sense Farms goes a step further and claims that their produce is better than traditionally grown veggies. He said, “Anybody who comes into this farm sees the high level of cleanliness here, and when they eat right off the rack they can see the precise nature in which this has been grown.”

And beneficial in many more ways: Vertical farming can also have less obvious social benefits. Like in the case of Vertical Harvest, a social organisation based in Jackson, Wyoming, vertical farming can be a source of livelihood for physically-challenged people and other less privileged individuals. We get healthy food, they get to live a dignified life, and the organisation gets tax benefits! It is a fabulous win-win.

Tech, from light to air quality

Vertical farming does not necessarily have to be large scale, and it does not have to use technology either. Clover Organic’s idea of a ‘farm in a basket’, for example, enables a family to self-sufficiently grow its own vegetables in a 500 sq ft area. Clover Organic’s solutions are all-natural and rely on natural sunshine. Sanjay Aggarwal, founder and CEO of Clover Organic, a pioneer in vertical farming in India, says that they follow a natural model of vertical farming. “We do not use any electricity or gadgetry in our model of vertical farming. Our model is natural. As far as economics go, our cost is very nominal. It works out to about Rs. 800 per 250-litre tank. One can use as many such tanks as the space he might have on his terrace or balcony. We only use natural sunshine. In the areas of the tank where sunshine cannot reach directly, we grow shade-loving crops like capsicum, strawberry etc,” he says.

That said, a large, commercial-level deployment will surely have to be tech-based. For starters, there are the technologies that go into controlling the environment, like LED lighting, heating, ventilation and air-conditioning (HVAC) technologies, and sensors and software to control the system.

Figuring the light recipe: LED lighting solutions for vertical farming are known by different names: grow lighting, horticultural lighting, engineered lighting etc. Several vertical farming pioneers across the world like New Jersey based Aerofarms, Portage based Green Sense Farms, Netherlands based Deliscious, etc, are using LED lights to provide the plants with exactly the spectrum, intensity and frequency they need for photosynthesis in the most energy-efficient way possible. Aerofarms claims that such a lighting system helps them to control everything from size, shape, texture and colour to flavour and nutritional value of the produce in an extremely productive way. Philips is one of the major players in researching and providing lighting solutions for vertical farming. The company’s GrowWise Center in the Netherlands has eight climate-controlled rooms, each equipped with four multi-layer systems and one germination room. Equipped with 540 GreenPower LED production modules and 6624 GreenPower LED research modules, the centre helps to find the right ‘light recipe’ for different crops. One of the main aspects of their research and development is to make such lighting as energy-efficient as possible.

Conditioning the air to grow veggies even in Alaska: The HVAC system is another critical aspect of a vertical farm. With smart, energy efficient, large area HVAC systems like the one developed by Japanese vertical farming organisation Spread, it becomes possible to grow veggies anywhere in the world, by maintaining the humidity and temperature within a range that is optimal for photosynthesis.

Sensors, data and intelligence: Another popular aspect of tech deployment in a vertical farm is the sensor network used to automatically monitor nutrient levels in the water or air, and replenish it on a need basis. Further, other environmental aspects are also constantly monitored and the data is studied remotely using predictive analysis to control the systems and to minimise the risks associated with traditional agriculture. According to a media report, Aerofarms’ growing trays collect 30,000 data points on parameters like temperature, humidity, carbon dioxide and oxygen levels. Data scientists from universities such as Harvard and MIT analyse this data in real-time using machine-learning software, to predict how future crops will grow and to optimise the growing algorithms of 250 different types of plants. Once the best way is figured out, it can be meticulously replicated every time in the controlled environment!

Unique DIY Projects

Electronics News

Truly Innovative Tech

MOst Popular Videos

Electronics Components

Calculators