Wednesday, March 22, 2023

Augmented Reality in Medical Applications

By Paul Pickering, Freelance Technical Writer & Columnist, Electrical Engineer, Pro Musician, University of London

- Advertisement -

Similarly, the XLP (eXtreme Low Power) family of PIC microcontrollers is designed to maximize battery life in wearable and portable applications. XLP devices feature low-power sleep modes with current consumption down to 9nA and a wide choice of peripherals. The PIC32MK1024GPD064, for example, is a mixed-signal 32-bit machine that runs at 120MHz, with a double-precision floating-point unit and 1MB of program memory. Signal conditioning peripheral blocks include four operational amplifiers (op-amps), 26 channels of 12-bit Analog-to-Digital Conversion (ADC), three Digital-to-Analog Converters (DACs), and numerous connectivity options.

Microchip also offers a sensor fusion hub, as well as several wireless connectivity options including Bluetooth and Wi-Fi modules. Combined with third-party optics and other blocks, these components can form the basis of a low-cost AR solution.

Finally, The Microsoft HoloLens core combines a 32-bit processor, a sensor fusion processor, and a high-definition optical projection system. Other key components include wireless connectivity, a camera and audio interface, power management, and cloud-based data analytics.


- Advertisement -

AR technologies have already demonstrated their value in medical applications and promise to bring big changes over the next few years to both the clinic and the operating room. Although the optics add a new dimension, many of the hardware building blocks have already been proven in high-volume wearable and portable products.

This article was first published on 24 November 2017 and was updated on 2 January 2020.



What's New @

Truly Innovative Tech

MOst Popular Videos

Electronics Components

Tech Contests