EDA Becomes Interactive With 3D Rendering and Routing Solutions

8049
 

Opening up the source

Open source E-CAD tools are also becoming popular. With the latest releases like Ki-CAD version 4.2, these have become more attractive than ever. With 3D rendering, Github library integration and support for making spice simulation, these are attracting designers bigtime.
Anuj Deshpande, founder Makerville Solutions adds, “we can now make artistic circuits.” He further adds, “We can write script in python and convert to desirable format using Ki-CAD.” Such features certainly make open source tools attractive. Let’s look into some of these features that have cropped up in the recent years.

What are the new features coming in?

On the designers requirement, Neel Desai, product marketing manager, Lynx, strategic alliances and GTS marketing, Synopsys Inc. says, “Design managers need tools that can help them manage complex SoC design projects, monitor their progress and forecast their outcomes.” The Cadence design team came up with massively parallel architecture, physically aware context generation, unified global routing and PPA optimisation in their systems. This involves coordinating the design efforts of multiple engineers and analyzing massive amounts of data, to achieve the fastest and most predictable tape-out possible.

Certified vs. Golden EDA tools

It is important to understand the subtle but big impact difference between the two classifications. There are many tools that are “Certified” but a minority that are “Golden”. When a semiconductor foundry labels a tool as “certified” it means that it will accept data from a customer if the customer has used the certified tool. These certified tools become a part of the pre-evaluated reference methodologies, also called as RM flow, consisting of suitable tools “Golden” on the other hand means that the golden tool is used – as a reference for other certified tools and as the tool of choice by the foundry for their development tasks.

3D visualisation

Imagine making a circuit and being able to work on the real time problems, before having to face those problems in real time. Now stop imagining and go for the latest tools and see it for yourself. This option to visualise the full module before possibly destroying copper, comes in very handy at times. “Parameters like heat dissipation can be calculated in the 3D render itself,” says Tamanna.routing circuits
3D models also help in checking for the final design of the device. The design can be modified to suit the design requirements with a simple 3D render.

Power distribution management

With the latest tools, we can measure the functioning parameters. This helps in checking if the design would work as expected or not. “If the board is getting heated in a particular area, then it has to be designed again,” says Tamanna. This can also help in preventing disaster from striking at a later stage on copper.

Higher precision

With the reducing size of electronics on a daily basis, the requirement for higher precision is also a concern. Earlier people were not concerned with an area of a few mm. “But today designers require very high precision,” adds Tamanna. Today we have requirements for precision at about .1mm. The latest EDA tools support this requirement in order to bring about the best in design.
Digital electronics design also requires very high precision. The current solutions are prepared to support the best in design. “Composite EM  technology, in the ADS platform, maintains the same level of accuracy and we have increased the performance by multipleX,” Deepak R K, general manager EEs of EDA, Keysight Technologies India Pvt. Ltd.

Special cases of board design

Wearables and other special use cases, have increased the demand for flexible PCBs. “Rigid-flex is a technology for designers working on flexible PCB,” says Tamanna. With this new feature, the designers can verify the parameters that might interfere with different movement and shape of the product.
The Rigid-flex or Flex PCB boards must perform within the specified performance band in different physical orientations. “It is significantly important to know the exact specifications to which the boards are being designed at. If the designer of these boards does not pay attention to the constraints or the parameters, the board runs the risk of losing  its physical or electrical integrity.” explains Dixit. Some Open source tools are also attempting to add such features since wearables often employ flexible PCBs.

Working in Groups?

Dixit says, “Collaboration is not a desire any more but has become a necessity. The designs are getting larger and the design teams are getting more distributed. Multiple engineers can work on their marked/dedicated areas of the same design simultaneously and the updates/impacts of changes in one area are reflected live in real-time to the other engineers.” Today tools offer “live collaboration” for multiple people working in real time. Just hope too many cooks don’t spoil the broth.
“We have the collaboration feature for designers working in groups on a project,” says Tamanna. Open source tools are also updating to the latest features with the group working feature being one of them. “The master-slave mode is for teams working on different levels of the project,” says Deshpande. This can also be used to monitor the progress of the design.

SHARE YOUR THOUGHTS & COMMENTS

Please enter your comment!
Please enter your name here