Friday, December 5, 2025

Maximising Solar PV Energy Penetration

 [stextbox id=”info”]Creating market barriers will lead to higher prices and less pressure for cost reduction and innovation, ultimately hurting the economies that adopt them[/stextbox]

Prof. Weber gave another example of a high-quality block-crystallised silicon material. There should be polarity switch in umg silicon. The umg Si is compensated: both boron (B) and phosphorous (P) are present in the feedstock. The dopant crossover is due to different segregation coefficients.The consequence: p- and n-type Si within the same brick and even single wafers. Dopant engineering is needed to avoid the p-n switch or increase the yield.

- Advertisement -

There is another example: non-conventional c-Si material or solar cells made from crystalline silicon thin-films. All concepts have good to very good cost perspective. High-throughput, low-cost Si deposition will be required for quick progress.

The key design data of a non-conventional c-Si material (ProConCVD) was presented. The ProConCVD is a massively scaled version of the ConCVD, intended to prove the scalability of the approach to a near-production level of more than a thousand wafers per hour. The data includes:
1. Three tracks, each with two car-riers. Each carrier holds three 156×156 mm2 wafers in height
2. Total deposition area: 5 m2
3. Maximum transport speed: 12 m/h
4. Furnace: max. 360kW, resistance-heated, 2x8m2 footprint, 2m stable zone
5. Process temperature up to 1300°C
6. Available process gases (maximum consumption/min): SiHCl3 (300 gm), SiCl4 (500 gm), SiCl3(CH3) (300 gm), H2 (4000 sl), HCl (50 sl)
7. Throughput > 30 m2/h (equivalent to 1200 wafers per hour) for 20μm layer thickness. A simple scale-up is possible.

As per the current status of ProConCVD, all hardware installations have been completed. The transport and heating system is in operation. The infrastructure is online. The firsthigh-quality epitaxial layers have been done successfully. Strategies to increase the efficiency o normal crystalline silicon solar cells include advanced metallisation, selective emitters, dielectric surface passivation, thinner wafers, process control, ultra-light trapping, material quality and back-contact cells. Estimating the efficiencypotential on boron-doped Cz-Si, with a limitation due to metastable boron-oxygen defect, there is the optimised industrial cell structure (PERL). The efficiencyis limited to about 20 per cent due to boron oxygen lifetime degradation. The solution: n-type silicon, with no degradation and higher tolerance to metal contamination.

- Advertisement -

The lab results of high-efficiency n-type PERL cells were also shared. There was substitution of local phosphorus diffusion by laser doping from innovative double-function PassDop layer (passivation and doping). Excellent results were achieved with evaporated front contacts.

Prof. Weber talked about the efficiencies of Ni/CuSn metallisation. Solar cell properties include direct plating, lowly doped emitter (120 ohms/square) and dielectric rear passivation. It also has excellent efficiecies and fillfactors. As for the thin-filmCIS solar cell structure, the key challenge is to realise the impressive small-area lab effciency results in production-size modules and volume production.

He touched upon the benefits of multi-junction sola cells and high-efficiencyISE triple-junction solar cells obtained by MOCVD thin-filmdeposition. Advantages of high-concentration PV cells include system effiiencies of 25 per cent AC today, about 200 MW/year worldwide production capacity, no cooling water or intentional hot water, modular kW to GW scale, and one-year energy payback time.

The future vision: Renewable electricity super grid
Prof. Weber gave an example of DESERTEC—the vision of an electricity super grid. DESERTEC is a mega renewable energy project that aims to set up a massive network of solar and wind farms stretching across the Middle East and North Africa (MENA) region and connected to Europe via a Euro-Mediterranean electricity network made up of high-voltage direct current transmission cables. The project, estimated at €400 billion, will provide 15 per cent of Europe’s electricity by 2050.


The author is an executive editor at EFY

EFY Bureau
EFY Bureau
Official Author account for Electronics For You

SHARE YOUR THOUGHTS & COMMENTS

EFY Prime

Unique DIY Projects

Electronics News

Truly Innovative Electronics

Latest DIY Videos

Electronics Components

Electronics Jobs

Calculators For Electronics