Thursday, April 18, 2024

Wireless Gesture Controlled Robot

Fixed plates are driven by 180° out-of-phase square waves. Acceleration deflects the moving mass and unbalances the differential capacitor, resulting in a sensor output whose amplitude is proportional to acceleration. Phase-sensitive demodulation techniques are then used to determine the magnitude and direction of the acceleration.

L293D

This is a 16-pin DIP package motor driver IC (IC6) having four input pins and four output pins. All four input pins are connected to output pins of the decoder IC (IC5) and the four output pins are connected to DC motors of the robot. Enable pins are used to enable input/output pins on both sides of IC6.

D2A_Table_14Z8_Table_2

Encoder (HT12E) and decoder (HT12D) ICs

The 212 encoders are a series of CMOS LSIs for remote-control system applications. These are capable of encoding information that consists of N address bits and 12 N data bits. Each address/data input can be set to one of two logic states. Programmed addresses/data are transmitted together with header bits via an RF or infra-red transmission medium upon receipt of a trigger signal. The capability to select a TE trigger on HT12E or a data (DIN) trigger on HT12D decoder further enhances the application flexibility of 212 series of encoders. The HT12D also provides a 38kHz carrier for infra-red systems.

1ZD_Fig_5
Fig. 5: An actual-size PCB layout of the gesture controlled robot: transmitter circuit
2BA_Fig_6
Fig. 6: Component layout of the gesture controlled robot: transmitter circuit
B1E_714_Fig_7
Fig. 7: An actual-size PCB layout of the gesture controlled robot: receiver circuit
C7D_Fig_8
Fig. 8: Component layout of the gesture controlled robot: receiver circuit

Download the PCB and component layout PDFs: click here

Download the source code: click here

Transmitter

The transmitter consists of ATmega328 microcontroller (IC2), ADXL335 accelerometer, HT12E encoder (IC4) and 433MHz RF transmitter module (TX1). In this circuit, two analogue outputs from ADXL335 pins (x, y) are connected with input pins (23, 24) of the microcontroller. Analogue signals are converted to digital signals through the microcontroller. Digital outputs from pins 16, 17, 18 and 19 of the microcontroller are directly sent to pins 13, 12, 11 and 10 of encoder IC4. This data is encoded and transmitted via RF module TX1.

- Advertisement -

Receiver

The receiver part consists of 433MHz RF receiver module (RX1), HT12D decoder (IC5) and L293D motor driver (IC6) to run the motors. Here, receiver module RX1 receives the transmitted signal, which is decoded by decoder IC to get the same digital outputs. Four outputs of IC6 drive two motors. The robot moves as per tilt direction of the accelerometer in the transmitter. The direction of the robot movement is as per logic listed in Table I.

42 COMMENTS

  1. HI..
    My name is vimal savani
    I make hand gesture controlled robot.
    There is one problem that is when i tilt accelerometer then robot does not change direction..and not move.. i use here adxl335 accelerometer. So pls.. help me.

  2. #define FD 16
    #define BD 17
    #define LD 18
    #define RD 19
    #define m11 3
    #define m12 4
    #define m21 5
    #define m22 6
    void forward()
    {
    digitalWrite(m11, HIGH);
    digitalWrite(m12, LOW);
    digitalWrite(m21, HIGH);
    digitalWrite(m22, LOW);
    }
    void backward()
    {
    digitalWrite(m11, LOW);
    digitalWrite(m12, HIGH);
    digitalWrite(m21, LOW);
    digitalWrite(m22, HIGH);
    }
    void left()
    {
    digitalWrite(m11, HIGH);
    digitalWrite(m12, LOW);
    digitalWrite(m21, LOW);
    digitalWrite(m22, LOW);
    }
    void right()
    {
    digitalWrite(m11, LOW);
    digitalWrite(m12, LOW);
    digitalWrite(m21, HIGH);
    digitalWrite(m22, LOW);
    }
    void Stop()
    {
    digitalWrite(m11, LOW);
    digitalWrite(m12, LOW);
    digitalWrite(m21, LOW);
    digitalWrite(m22, LOW);
    }
    void setup()
    {
    pinMode(FD, INPUT);
    pinMode(BD, INPUT);
    pinMode(LD, INPUT);
    pinMode(RD, INPUT);
    pinMode(m11, OUTPUT);
    pinMode(m12, OUTPUT);
    pinMode(m21, OUTPUT);
    pinMode(m22, OUTPUT);
    }
    void loop()
    {
    int temp1=digitalRead(FD);
    int temp2=digitalRead(BD);
    int temp3=digitalRead(LD);
    int temp4=digitalRead(RD);

    if(temp1==1 && temp2==0 && temp3==0 && temp4==0)
    backward();
    else if(temp1==0 && temp2==1 && temp3==0 && temp4==0)
    forward();
    else if(temp1==0 && temp2==0 && temp3==1 && temp4==0)
    left();
    else if(temp1==0 && temp2==0 && temp3==0 && temp4==1)
    right();
    else
    Stop();
    }

SHARE YOUR THOUGHTS & COMMENTS

Unique DIY Projects

Electronics News

Truly Innovative Tech

MOst Popular Videos

Electronics Components

Calculators